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Abstracl-It is shown that the eigenvalues of the temperature modes across a two-layer composite slab must
progressively become imaginary in the more diffuse layer, for the higher order temperature modes along the
slab . A logical argument is presented to show that this represents the more diffuse layer effectively short
circuiting the less diffuse layer in dissipating temperature variations along its length. It is also shown that for a
fully insulated composite slab, temperature variations along the slab must be accompanied by temperature

variations across the slab.

l"O~IEl"CLATURE

Aj, Bj, Cj constants in the series expansion of the
temperature in the slab

aj thermal dilTusivityof the jth layer of the slab
B, Biot number, hxJ!kJ

£2' G2 defined by equation (17)
11 'heat transfer coefficient from the surface of the

slab
J number of layers in the slab
kj conductivity of the jth layer of the slab
T temperature in the slab
t time
x position across the slab
XJ thickness of the slab
Y position along the slab
Yl length of the slab

Greek symbols
ct.j normalized thermal diffusivity, a/aJ
Pj normalized thermal conductivity, k/kJ

y normalized length of the slab, YtlxJ
!! dilTerence between consecutive longitudinal

eigenvalues
11 normalized position along the slab, y/xJ
o normalized time, taJ/k}
). transverse eigenvalue
Jl longitudinal eigenvalue
t/J normalized position across slab, xix,

It'iTRODUCfION

THE TRANSIENT temperature response of a two
dimensional multi-layer composite slab, which
experiences a sudden change in its environmental
temperature,has been expressed in terms ofthe product
of a doubly infinite series in the two spatial dimensions
togeth er withan exponential time dependency [1] .The
slab under consideration is fully insulated on threesides
and is coupled to its environment only through the
upper surface of the uppermost layer of the slab, but

since there is no energy transfer across the lower surface
of the slab, the solution is equally applicable to a two
dimensional composite slab coupled to its environment
through both the upper and lower layers. The terms of
the series expansions, or the eigenfunctions , can be
thought of as temperature modes within the slab. The
study was stimulated by a solar space-heating system
and in order to make full use of the results ofthe study, it
is important that a full physical interpretation of the
solution be made. The solution has the form

co co

T = L L exp{ -().Jnm+Jl;)O}C jn cos Iln'l
n =O m= 1

where fln arc the eigenvalues associated with the space
coordinate along the slab and )'jnm are those associated
with the space coordinate across the slab. Physical
interpretations and implications ofsolution(1)will now
be made.

TIlE LONGITUDINAL EIGENFUNCfIONS

The eigenvalues fin associated with the longitudinal
space coordinate '1have values ofme/y,1l = 0, 1,2, ... , as
given by equation (11) in ref. [1] , and hence the
associated eigenfunctions, which have the form cos fln'l,
are simply the terms of a Fourier cosine spectrum in the
II-coordinate of the initial temperature distribution. If
this happens to be separable, then the amplitudes of the
Fourier components can be determined but otherwise,
only the amplitude of the product of the Fourier
component and an associated transverse eigenfunction
can be determined. The relative rates of decay of these
Fourier components is of interest in the space-heating
system for which this study was initiated, and this
aspect of the dilTerences between the homogeneous and
composite slabs will now be considered.

For the homogeneous slab, the magnitude of the pth
Fourier component of the initial temperature
distribution atthe point (0,0) and time 0, relative to its
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where

(2)

i sinh )4!/tj-l/tj-I)]
cosh )'ii!/tr!/tj-I) ,

(3)

TIlE TRANSVERSE EIGENVALVES

The eigenvalues associated with the space coordinate
I/tare given by equations (22) and (23) in ref. [1] for the
multi-layer slab and by equation (52) for the
homogeneous slab. The roots of equation (52) are
necessarily real [4], but it is clear from the form of
equation (23)that the eigenvalues in some layers of the
composite slab could be imaginary. They can never be
imaginary in all layers simultaneously since if )'j = i)'ij,
then equation (22) in ref. [1] becomes

[B I 1] [0
1

'p
o
, ]n[i)'iJ(!/tJ-I/tJ-I)]

I J".iJ

Pj~'ij ] n[i)'i/!/tj-I/tj-I)]

Pj+ I)'ij+ I

Pj-l~'ij-I] n[iJ.ij-l(!/tj-I-l/tj-2)] x ...

P/ij

n[i).Jl/tj-!/tj- .n

[
cosh ).J!/tj-!/tj-I)

= -i sinh ).J!/tj-!/tj-I)

[
1 0] 1

x ° PI)'i! n[i)'i!!/ttJ[o] = 0.
P2)'i2

Now from the definition of n, equation (17) in ref. [1]

and therefore multiplying any two adjacent general
matrix factors in equation (2)gives

SII = cosh )'i/!/tj-I/tj-I) cosh )'lj-I

( . ,. .1, Pj-l)·ij-I. h '(.I. .1.X'l'j-l-'I'j-2)+ Sill l"iJ\'I'j-'I'j-tl
P/ij

x sinh )'ij-I(l/tj-I-l/tj-2), (5)

00 00

exp(-JI;O) I Aim exp(-).imO)/ I Aim'
m=l m=l

00 00

exp( - Jl;O) I A Ipm exp( - ).ipmO)/ I A Ipm'
m=l m=1

00

I A l pm exp( -)·ipmO)

exp{ - VI;- p:)O}.:::m-=:-=-I .

I A l qm exp(-).iqmO)
m=1

value of 0 = 0, is, from equation (53) in ref. [1]

Hence the relative rates of decay of the Fourier
components of the initial temperature distribution
along the slab, are determined solely by the relative
magnitudes of the eigenvalues of the Fourier
components and are independent of any temperature
redistribution or decay in the I/t-coordinate.

For the composite slab, the magnitude of the pth
Fourier component of the initial temperature
distribution at the point (0,0) and time 0, relative to its
value at 0 = 0, is from equation (24) in ref. [1]

00 00

I A l pm exp( -).ipmO) I A l qm

exp{ -(/I;-/I:)O} m:1 m,:'1
I A lqm exp(-liqmO) I A l pm

m=l m=1

The temporal rate of decay of this normalized value for
the pth Fourier component relative to that for the qth
Fourier component is therefore

If the initial temperature distribution is separable then,
00

as was shown in equation (43) in ref. [1], I A lnm is a
m=l

constant for all values of'n' so that, in this special case,
the above expression becomes

For sufficiently large values of 0, only the first terms of
the above two series are relevant and the expression can
then be reduced to

exp[- {(P; +).ipI)-(P: +).iql)}O]AIPt/Alql'

Hence, for the composite slab, the rates of decay of the
Fourier components, relative to each other, are not
only dependent on the relative magnitudes of these
respective eigenvalues but also on the magnitudes of the
associated transverse eigenvalues. In principle, this
phenomenon would allow one to modify the
longitudinal transient behaviour of the composite slab
by changing the transverse transient behaviour, and
this can be done by altering the relative thicknesses of
the layers, their relative physical properties and the
coupling between the slab and its surroundings
through the free surface.

The rate of decay of this normalized value for the pth
Fourier component relative to that for the qth Fourier
component is therefore



Transient conduction in a two-dimensional composite slab-II 1619

. h}' ('" fJj-I)'ij-1
x sin 'ij-I 'l'j-I-t/Jj-Z)+ fJ }.

j+1 'lj+1

x cosh )'iit/Jj-t/Jj-tl cosh ).ij-I(t/Jj-I-t/JJ-z), (8)
Since t/Jj > t/Jj_1 from the configuration shown in ref.
[1], then equations (5}-{8) show that all the elements of
S are positive. Evaluating the first three matrix factors
of equation (2) gives:

[B, 1][0
1

'pO, ]O[i)'iAt/JJ-t/JJ-I)] = [U iV],
I J"'jJ

(9)

where

U = B, cosh )'iAt/JJ-t/JJ-I)+fJJJ.U

x sinh )'iAt/JJ-t/JJ-I), (10)

and

v = B, sinh )'u(t/JJ-t/JJ-I)+PJ)'iJ

x cosh )'iJ(t/JJ-t/JJ-I)' (11)

Evaluating the last three matrix factors in equation (2)
gives:

[: P1~'i1] n[i)'i1t/J I] [~J
PZJ.iZ

[

cosh )'i1t/JI ]
(12)

. PI)'i1 . h ',', .
-1 fJZ)'iZ sm I"i 1'I' I

Hence, evaluating the product of the three matrix
factors at each end in equation (2) and also the
remaining factors, leads to a matrix equation of the
form:

which is impossible since all the terms are positive.
Hence the eigenvalues can never be imaginary in all the
layers simultaneously.

When Jln is zero, for which II is zero and there is
no temperature variation along the slab, )'jOm

= (1/~r:J.PJom so that all the transverse eigenvalues in
each layer are real, with the lowest value for each order
'm' occurring in the layer of highest difIusivity and the
highest value occurring in the layer of lowest
difIusivity; also, the value of the (m+ l)th eigenvalue is
higher than that of the mth eigenvalue in each layer. It is
also clear from equation (23) in ref. [1] that the
eigenvalue Pn has a decreasing influence on the higher
order transverse eigenvalues )'jnm' Physically, this states
that higher rates of change in temperature across a
composite slab are less dependent than lower ones on
temperature variations along the slab. Note that for a
homogeneous slab, temperature variations in the two
space dimensions are independent.

It was stated above tha t some transverse eigenvalues
could be imaginary. It is shown in the Appendix that,
for a two-layer slab, when the longitudinal eigenvalue is
increased from Pn to Pn+ I' then the value of any real
transverse eigenvalue is decreased in the higher
difIusivity layer and increased in the lower-diffusivity
layer. Strictly, the proof in the Appendix is only for a
change !J. in P which is sufficiently small for !J.z to be
neglected and since from eq uation (11)in ref.[1] !J. has a
value of nfy, this implies a slab whose length is large
relative to its thickness. However, the change in the
value of the real transverse eigenvalues )'jnm is always in
the same direction, that is, always decreasing or
increasing in the higher- or lower-diflusivity layers,
respectively, for all values of III, and since the value of!J.
for a thick slab is simply a multiple of the value of!J.for
an arbitrarily thin slab, then the conclusion is true for all
two-layer slabs. Since all the transverse eigenvalues
must be real when n is zero, then they must remain real
in the layer of lower difIusivity whereas in the layer of
higher difIusivity, they must decrease from their values
when 'n' is zero and they must all progressively become
imaginary as 'n' is progressively increased. The lowest
order transverse eigenvalue becomes imaginary firstly,
then the second lowest order, etc.

If r:J.1 is greater than unity, then the transverse
eigenvalues )'1 in the lower layer of a two-layer slab
become imaginary, or possibly zero, when from
equation (23) in ref. [1]

( 1) Z 1Z1-- Pn ~-)·z·
r:J. I r:J.I

If J. I is zero, then equation (51) in ref. [1] becomes

).z tan ).z(t/Jz-t/JI)-B, = 0, (15)

which is of the same form as the transcendental
equation (52) for the homogeneous slab. However, in
the present case

)'z = (r:J. I - l )l/zp,

and equation (15)determines the value of'p' for a given
value ofB, for which )'1is zero. Since 'JI' isdependent on
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the length oftheslab, equation (15)defines the length for
a particular type of slab and its environment for which
there is at least one zero-valued eigenvalue in the lower
layer.

If(".(1 is less than unity, then the transverse eigenvalues
).z in the upper layer become imaginary, or possibly
zero . when

(i-a.dJI; ~ a.1)·f·

If ).z is zero. then equation (51) in ref. [I] becomes

B,-[1+B.(tPz-tPI)]PI)'1 tan )'ltPl = O. (16)

where

and again equation (16)defines a length for a particular
type of slab for which there is at least one zero-valued
eigenvalue in the upper layer.

temperature distribut ion. When the zero- valued
eigenvalue is in the upper layer, which must then be the
more dilTuse one. there isno change in the stored energy
at any point in th at layer due to energy flowing across
the layer and any such change must be due solely to
energy flowing along th at layer: again. this is only true
for that particular longitudinal and transverse
temperature distribution.

If )"1 is imaginary and equal to i)"n. then the
associated eigenfunction in the lower layer has the form

cosh ).ntP,

and in the upper layer

' .f, )·z tan )·ZtPl +PI)·n tanh )·n"'l . ' .1,
cos I"Z'l' + -sin 1"2'1"

),z-PI)·n tan )·Z"'I tanh)·i1"'1

If ).z is imaginary and equal to ii.iz, then the
associated eigenfunction in the lower layer has the form

cos ).1"',

TilE TRAr-;SVERSE EIGENFUr-;crIOl"S

-1

w~ A
- - - ~:- -B

/ (
I I:

I:

-1

(a)

lb)

t\__ ...;I __

!I \:1 ,
: 1

;m;r;V;;;;;;»;J///»»

cos lin'! =+1

Tn

cos lin'! = +1

and in the upper layer

h ' ./, )'i2 tanh )"i2"'I-PI)"1 tan )'1"'1
cos l'·iZ'l' +, fl' h" ,

l"i2+ 11"1 tan I"iz'lll tan 1"1"'1

"sinh )"i2""

The physical significance of the imaginary eigen
values can be obtained by considering the shape of the
associated eigenfunctions in the two layers. Figure I(a)
shows the eigenfunctions for a two-layer slab as )'2
changes from being real, through zero. to being
imaginary for consecutive values of II. and at the planes
cos JI.'[ = ± I ; Fig. I(b) shows the similar case for )'1'

FIG. I. Eigenfunctions for real a nd imaginary eigenvalues for a
two-layer slab: (a) top layer more diffuse; (b) bottom layer
more diffuse. ........•eigen value in more diffuse layer real ;-------.
eigenvalue in more diffuse layer zero; ---. eigenvalue in

more d iffuse layer imaginary.

(17)
_G_z = )·z tan )'ZtPl-Pl)'1 tan )'ltPl
z, )'Z+Pl)"1 tan ).ZtPl tan ).ltPI·

The two-layer composite slab will be used to discuss
the eigenfunctions associated with real, zero and
imaginary eigenvalues and to deduce the related heat
flows about the interface between the two layers. When
the eigenvalues in both layers are real. then from
equation (29) in ref. (1] and since E1 = I and GI = 0
from equatiori (25) in ref. [1], the eigenfunctions in the
lower layer have the form

cos )'ltP.

and in the upper layer

cos ).ztP + Gz sin ),ztP,
Ez

where from equations (45) and (46) in ref. [1]. with
pz = I

If ).1 is zero, then the form of the associated
eigenfunction in the lower layer of the slab is a constant
equal to unity. and in the upper layer is

cos ),z'" + tan ),z'" I sin ),z""

If ).z is zero. then the form of the associated
eigenfunction in the lower layer of the slab is

cos )'1""

and in the upper layer is

Pl)"1 tan)'I"'1 ,
1- "'II

1+"'IPI)'1 tan )'1"'1 •

which is a line of constant slope.
It is interesting to note that when the zero-valued

eigenvalue is in the lower layer, which must then be the
more dilTuse one. then no energy flows across the lower
layer for that particular longitudinal and transverse
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Consider the planes A, Band cos IIn'l = ±1in Fig. l(a).
The longitudinal energy flow in both layers is away
from the plane cos IIn'l = + I and towards the plane
cos IIn'l = -1. At the intersection of planes Band
cos IIn'l = + 1,more energy is leaving than is arriving in
the transverse direction and this excess must be from
the stored energy here, whereas at the intersection of
planes B and cos IIn'l = -1, more energy is arriving
than is leaving in the transverse direction and this
excess energy must be stored here.

At the intersection of planes A and cos IIn'l = + 1:

}'2 real: more energy is leaving than is arriving in the
transverse direction and the excess must be from the
stored energy here.

}'2 zero: the energy leaving is equal to that arriving in
the transverse direction and therefore the transverse
energy flow has no effect on the temperature change
here.

}'2 imaginary: lessenergy is leaving than is arriving in
the transverse direction, which cannot be associated
with energy storage here since the energy is being
dissipated through the top surface, and hence, this
excess energy arriving in the transverse direction must
be leaving in the longitudinal direction.

At the intersection of planes A and cos IIn'l = -1:

}'2 real: more energy is arriving than is leaving in the
transverse direction and the excess must be stored here.

l2 zero: the energy leaving is equal to that arriving in
the transverse direction and therefore the transverse
energy flow has no effect on the temperature change
here.

}'2 imaginary: more energy is leaving than is arriving
in the transverse direction, which cannot be associated
with energy storage since the diffusion is into the slab
from the surroundings, and hence, this excess energy
leaving in the transverse direction must be arriving in
the longitudinal direction.

An examination of Fig. l(b) provides a similar
argument to that for Fig. l(a). Hence one can conclude
that the imaginary eigenvalues are associated with the
higher-diffusivity layer effectively short-circuiting the
lower-diffusivity layer in the longitudinal direction, for
those particular transverse and longitudinal tempera
ture distributions.

It is interesting to note that when B, is zero, which it is
for a fully insulated slab, then when II is zero, a possible
solution ofequation(51)inref. [1] is that both }'l and }'2

are equal to zero. Hence, when II is not zero, the lowest
order transverse eigenvalue must be imaginary in the
layer ofhigher diffusivity, and real and greater than zero
in the layer of lower diffusivity. In physical terms, this
tells us that while it is possible to have a temperature
variation across a fully insulated composite slab with
no temperature variation along it, it is impossible to
have temperature variation along the slab without
having temperature variation across it.

CONCLUSIONS

It has been shown that the transverse eigenvalues
decrease in magnitude in the more diffusive layer of a
two-dimensional two-layer composite slab as the
longitudinal eigenvalues increase, and conversely, they
increase in the less diffusive layer. In the homogeneous
slab, the transverse eigenvalues are independent of the
longitudinal eigenvalues and the solution for the
composite slab therefore shows that the rate of decay of
temperature variations along the slab is decreased in
the higher-diffusivity layer by the presence of the lower
diffusivity layer, but it is enhanced in the lower
diffusivity layer by the presence ofthe higher-diffusivity
layer.

The transverse eigenvalues in the higher-diffusivity
layer progressively become imaginary as the order of
the longitudinal eigenfunction is increased. These
imaginary eigenvalues reflect that for that order of
longitudinal and transverse temperature distribution,
energy isbeing transferred between different parts ofthe
lower-diffusivity layer via the higher-diffusivity layer.
The sum of the squares of the real longitudinal
eigenvalue and the imaginary transverse eigenvalue is
always positive because the sum is related to the sum of
the squares of the eigenvalues in the other layer, and the
eigenvalues in the layer of lower diffusivity are always
real; hence, the complete eigenfunction is decaying in
both layers. The solution also shows that steeper
temperature gradients across the lower-diflusivity
layer, that is higher values of }'jnm, require steeper
temperature gradients along the slab, that is higher
values of lIn for energy to flow between different parts of
the lower-diffusivity layer via the higher-diffusivity
layer.

For the special case of a fully insulated composite
slab, it ispossible to have temperature variations acro:s
the slab with none along it, but the converse tS

impossible.
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APPENDIX

Change in the transverse eigenvalues for a change in the
longitudinal eigenvaluefor a two-layer s!ab. .

The transcendental equation govermng the eigenvalues IS

equation (51)in ref. [1], which can be written as

),~ tan )'2(r/t2-r/tl)+P')")'2 tan ),Ir/tI+B.lJ,)"

x tan )'Ir/tl tan )'2(r/t2-r/tl)-B/2 = 0, (AI)

where from equation (23) in ref. [1]

J.~+p2 = Cl,(J.i+p2). (A2)

Ifthe nth longitudinal eigenvalue isp and the (n+ I)th is 'p + /'i.',
and if the corresponding transverse eigenvalues are )'2

together with )." and )'2 +i\2 together with )" +i\,
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respectively, then
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gives

(AI2)

If li,li, and liz are all sufficiently small that their squares and
higher powers may be neglected, then equation (A3) can be
reduced to

(M)

Also, from equation (AI)

()·z+liz)Z tan ().z+liz)+P,()., +li,)().z+liz)

x tan W, +li,)tJ!.}+B,P,()., +li,) tan W, +li,)tJ!.}

x tan Wz+liz)(tJ!z-tJ!,J}-BPz+li z) = O. (A5)

Expanding the terms and neglecting the second and higher
power terms in li, and liz, which allows tan li) to be replaced
by li j , then equation (A5) can be reduced to

Substituting for ).zliz from equation (A4) into equation (A5),
and using equation (AI) to simplify the resulting equation

{

)·z
).,li, (x, +

)"

P'[)'z+B, tan AZ(tJ!Z-t/t,)]A,t/t,Z, }
x z

).zet/Jz-tJ!,)Zz+B.(t/tz-t/J,)P,)., tan A,tJ!,'Z3

+(Cl, -1)tlli = 0, (A7)

which, by squaring the denominator in the factor multiplying
)'z/)", leads to

{
).~t/J,p,Z,(),~Zl+B:Z3+2)'lB,Z4}

).,li, (x, + 1 Z
()'lZl +B,P,)·, tan ).,tJ!,. Z3)

+(Cl, -I)tlli = 0, (A8)

where

and
tan? )'l(t/tl-tJ!,)

Z4= .
AM1-tJ!.J

Note that Z,-Z4 are always positive for all real values of A,
and Al •Therefore equation (A8)shows that if IX, < I, then li, is
positive when li is positive, and if (x, > 1, then li, is negative
when li is positive.

Combining equations (A8) and (A4) gives

)'llil = (:£,-I)tlliV.~tJ!,p,Z,(),~Zl +B:Z3+2A1B,Z4)

-r- [(A~Zl+B,PIAI tan AltJ!I·Z3j2+).~tJ!IPIZI

x (A~Zl + B:Z3+ 2AzB,Z4)])' (A B)

which shows that if IXI < I, then li l is negative when li is
positive, and if (XI > 1, then li l is positive when li is positive.

Hence, for IXI < 1, )'1 increases and )'1 decreases as tl
increases, and for (XI > 1, )'1 decreases and Al increases as tl
increases.

CONDUCTION VARIABLE DANS UNE PLAQUE COMPOSITE BlDIMENSIONNELLE.
INTERPRETATION PHYSIQUE DES MODES DE TEMPERATURE

Resume-On montre que les valeurs propres des modes de temperature a travers une plaque composite a deux
couches peuvent devenir progressivement imaginaires dans la couche la plus diffuse, pour les modes de
temperature d'orde eleve Ie long de la plaque. Un argument logique est presente pour montrer que cela
represente Iefait que la couche la pius dilTusantecourt-circuite la moins diffusante en dissipant les variations de
temperature suivant fa longueur. On montre aussi que pour une plaque composite totalement calorifugee, des
variations de temperature longitudinales sont accornpagnees par des variations de temperature transversales.

INSTATIONARE WARMELEITUNG IN EINER ZWElDIMENSIONALEN GESCHICHTETEN
PLATTE-II. PHYSIKALISCHE DEUTUNG DER L6SUNGEN FOR DIE TEMPERATUR

Zusammenfassung-Es wird gezeigt, daB die Eigenwerte der Losungen des TemperaturverIaufs quer zu einer
zweischichtigen Platte in der besser leitenden Schicht fUrdie Teillosungen hoherer Ordnungin Langsrichtung
zunehmend irnaginar werden miissen, Dieser Umstand laBt sich so deuten, daB die besser warmeleitende
Schicht die schlechter leitende hinsichtlich des Ausgleichs von Temperaturunterschieden in Langsrichtung
kurzschlieBt. Weiterhin wird gezeigt, daB fUr eine vollkommen isolierte, geschichtete Platte Temperatur
unterschiede in Langsrichtung immer von Temperaturunterschieden in Querrichtung begleitet sein miissen,
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HEYCfAHOBHBIllMIC5I nEPE,U,AlIA TEnJIA TEnJIOnpOBOIlHOCfblO B
IlBYMEPH0l1 KOMn03HTHotl mUiTE-II. <I>H3HlIECKOE OIiOCHOBAHHE

TEMnEPATYPHblX MOIl

AHHOT3Q11H-nOKa3aHO, 'ITO C06CTBeHHhIe resmeparypusre MOJlhI, pacnpocrpaaaiounreca nonepex
nayxcnotiaon xoxmomraotl nJlIIThI, JlOJlJl(Hbl nOCTeneHHO nepexornrrs B aaryxaioume B .1l1l!fJ!fJYlHOM
cnoe Mil rexmeparypaux MOJl asicurero nopaaxa, pacnpocrpansroumxca BJlOJlb nrnrrsr. IlpIIBe.ueHO
rrornaecxoe JlOKa3aTeJlbCTBO TOro, 'ITO '1e~1 60Jlee 3¢!fJeKTlIBHO aaxopoxeu .1l1l!fJljJYlHblii cnon, Te~1 OH
MeHbllle npn npononsnsrx JlIICCllnaTlIBHblX 113MelleHIIlIX resrneparypsr. nOKa3aHO TaKJI(e, 'ITO JL111
nOJllIOCTblO 1130JllIpOBaHHoii KOMn0311TIIoii nrnrrsr npononsuue 113Mellellllll TeMnepaTypbl B.uO.1b

nrnrrsr JlOJlJl(Hbl conpoaoxnarsca nonepesnusm Te~mepaTypHbl~1II 113~lelleHIIII~III.
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