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Abstract—It is shown that the eigenvalues of the temperature modes across a two-layer composite slab must

progressively become imaginary in the more diffuse layer, for the higher order temperature modes along the

slab. A logical argument is presented to show that this represents the more diffuse layer effectively short-

circuiting the less diffuse layer in dissipating temperature variations alongits length. It is also shown that for a

fully insulated composite slab, temperature variations along the slab must be accompanied by temperature
variations across the slab.

NOMENCLATURE

A;B;,C; constants in the series expansion of the
temperature in the slab

a; thermal diffusivity of the jth layer of the slab

B, Biot number, hx,/k;

E,,G, defined by equation (17)
h heat transfer coefficient from the surface of the
slab

J number of layers in the slab

k; conductivity of the jth layer of the slab
T temperature in the slab

t time

x position across the slab

x; thickness of the slab

y position along the slab

y, length of the slab

Greek symbols

«; normalized thermal diflusivity, a;/a,
normalized thermal conductivity, k;/k;
normalized length of the slab, y,/x,
difference between consecutive longitudinal
eigenvalues
normalized position along the slab, y/x,
normalized time, ta,/k;
transverse eigenvalue
longitudinal eigenvalue
normalized position across slab, x/x;
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INTRODUCTION

THE TRANSIENT temperature response of a two-
dimensional multi-layer composite slab, which
experiences a sudden change in its environmental
temperature, has been expressed in terms of the product
of a doubly infinite series in the two spatial dimensions
together withan exponential time dépendency[1]. The
slabunder considerationis fully insulated on threesides
and is coupled to its environment only through the
upper surface of the uppermost layer of the slab, but

sincethereisno energy transfer across the lower surface
of the slab, the solution is equally applicable to a two-
dimensional compositeslab coupled toitsenvironment
through both the upper and lower layers. The terms of
the series expansions, or the eigenfunctions, can be
thought of as temperature modes within the slab. The
study was stimulated by a solar space-heating system
andinorder to makefull use of theresults of the study, it
is important that a full physical interpretation of the
solution be made. The solution has the form

s @K

T=Y Y exp{—(}.+12)0}C;, cos un

n=0 m=1

X (Ajpm €08 Ajurtlt + Bjoyy sin A5nt), (1)

where 1, are the eigenvalues associated with the space
coordinate along the slab and A, are those associated
with the space coordinate across the slab. Physical
interpretationsandimplications of solution (1) willnow
be made.

THE LONGITUDINAL EIGENFUNCTIONS

The eigenvalues p, associated with the longitudinal
space coordinate s have valuesofunfy,n = 0,1,2,...,as
given by equation (11) in ref. [1], and hence the
associated eigenfunctions, which have theformcos p,1,
are simply the terms of a Fourier cosine spectrumin the
n-coordinate of the initial temperature distribution. If
this happens to be separable, then the amplitudes of the
Fourier components can be determined but otherwise,
only the amplitude of the product of the Fourier
component and an associated transverse eigenfunction
can be determined. The relative rates of decay of these
Fourier components is of interest in the space-heating
system for which this study was initiated, and this
aspect of the differences between the homogeneous and
composite slabs will now be considered.

For the homogeneous slab, the magnitude of the pth
Fourier component of the initial temperature
distribution at the point (0,0} and time 0, relative to its
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value of § = 0, is, from equation (53) in ref. [1]

cxp(_“:g) Z Alm exp(—).f,,,O)/ Z Alm'
m=1 m=1

The rate of decay of this normalized value for the pth

Fourier component relative to that for the gth Fourier

component is therefore

exp{—(u; —n2)6}.

Hence the relative rates of decay of the Fourier
components of the initial temperature distribution
along the slab, are determined solely by the relative
magnitudes of the eigenvalues of the Fourier
components and are independent of any temperature
redistribution or decay in the y-coordinate.

For the composite slab, the magnitude of the pth
Fourier component of the initial temperature
distribution at the point (0,0) and time 8, relative to its
value at 0 = 0, is from equation (24) in ref. [1]

exp( ” 0) Z Alpm exp( )lpmo)/ Z Alpm-
m=1

The temporal rate of decay of this normalized value for
the pth Fourier component relative to that for the gth
Fourier component is therefore

Z Alpm CXp( ) lymo) z Alqm

exp{—(up — )0} =2 —

Z A 1gm exp( ; lqmg) Z A 1pm
m=1

If the initial temperature distribution is separable then,
w0

as was shown in equation (43)inref. [1], Y. Ajnisa
m=1

constant for all values of ‘n’ so that, in this special case,

the above expression becomes

z Alpm exp(—)'fpmo)
)o}m 1

z Alqm exp( )lqmo)

exp{—(u;—

For sufficiently large values of 0, only the first terms of
theabove twoseries arerelevant and theexpression can
then be reduced to

exp[—{(,uz +)“§pl)_(#q2+)'§ql)}o]Alpl/Alql'

Hence, for the composite slab, the rates of decay of the
Fourier components, relative to each other, are not
only dependent on the relative magnitudes of these
respective eigenvalues but also on the magnitudes of the
associated transverse eigenvalues. In principle, this
phenomenon would allow one to modify the
longitudinal transient behaviour of the composite slab
by changing the transverse transient behaviour, and
this can be done by altering the relative thicknesses of
the layers, their relative physical properties and the
coupling between the slab and its surroundings
through the free surface.
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THE TRANSVERSE EIGENVALUES

Theeigenvaluesassociated with the space coordinate
y are given by equations (22) and (23) in ref. [ 1] {or the
multi-layer slab and by equation (52) for the
homogeneous slab. The roots of equation (52) are
necessarily real [4], but it is clear from the form of
equation (23) that the eigenvalues in some Iayers of the
composite slab could be imaginary. They can never be
imaginary in all layers simultancously since if 4; = i4;
then equation (22) in ref. [1] becomes

i)

0
(5, 1] [0 ﬂl;”]n[izu(w,—w,-,)]

1 0
X 0 Bj)'ij Q[i}-i,(%—%—l)]
Bi+1dij+1
[ 1 0
X 0 Bij—1dij—1 | Qlidy— 1 —¥;-2)1% ...
Biki;
1 0 )
X 0 Bin | QLAu,] [0] =0. 2
B22i2

Now from the definition of Q, equation (17) in refl. [1]

QLAY —Y;-1)]

cosh 4;,(;—;-4)

_ i sinh ;.,,(.,1/}—://,_,)]
L —isinh 2 0;,—;-0)

cosh )-u(&bj— '//1— 1) '
3)

and therefore multiplying any two adjacent general
matrix factors in equation (2) gives

1 0
o P | QL]
Bi+ 1441
1 0
X 0 Bj-14ij-1 Q[i)'ij-l(lljj—l_wj—z)]
Bik;
Si islzjl
= A . (4)
[_ISZl S32 ¢
where

811 = cosh 2;{f;—;_4) cosh 2y
Wi+ Bt o gy,

ﬁ] vij
x sinh Ay (o1 —¥5-0), ()

X(‘/’j 1~

Sy, = cosh 2;{if;—y;_y) sinh 2;_,

X @yt = o)+ P97 Gk 3=y

ﬁ)ij
X COSh )ij—l(wj—l_ll,j_z)’ (6)
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83y = P o 2li=¥;-1)
ﬂj+ 1)|j+1
1A
x cosh A (0 —¥;_ )+ Bi-1i-1
Bi+14ijsn
x cosh )-.'J(\!/j—"l/j— 1) sinh /J.‘-j_ l(wj—l_‘.bj—z), (7)
v
S32 = Py sinh 2, (0;—¢;-4)
Bi+ 12441
. }‘
x sinh Ay 3 (- g —Yj-2) + 2t Bi-1tij—r
Bj+14ij+1

x cosh A;(j—;- 1) cosh Ay 1(fj-1 —¥;-2)- (8)
Since y; > {;_, from the configuration shown in ref.
[1], then equations (5){8) show that all the elements of
S are positive. Evaluating the first three matrix factors
of equation (2) gives:

0 . .
[B, 1] [0 i, :IQ[lliJ(wJ —Y,-)1=[U 1iV],
)

where
U = B, cosh 2,,(Y;— ;- 1)+ 8,2

x sinh 2,005, —¢;_,), (10)
and
V= B, sinh ).u(lll.,—'l,bl_ 1)'*‘!}])»,']

x cosh 2,00, —¥;-4). (11)

Evaluating the last three matrix factors in equation (2)

gives:
1 0 1
o B Q[iﬂ-m/n][o]
B2ti
cosh 2,,¥,
= .31 " . (12

sinh 4;,¢/,

i2

Hence, evaluating the product of the three matrix
factors at each end in equation (2) and also the
remaining factors, leads to a matrix equation of the
form:

w wn i |

—i’TZI'I‘ZZ
cosh 2,
B

2'11'2

=0. (13)

sinh 2,

Expressed in algebraic form, this equation becomes:
By
ﬁZJ'EZ
Bii
B2,

UTy, cosh 2y, +UT;, sinh 2,,¢,

+VT,, cosh A ¢, + VT, sinh 2,4 =0, {14)
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which is impossible since all the terms are positive.
Hence the eigenvalues can never beimaginaryin all the
layers simultaneously.

When p, is zero, for which n is zero and there is
no temperature variation along the slab, A,
= (1/\/et)210m 50 that all the transverse eigenvalues in
each layer are real, with the lowest value for each order
‘m’ occurring in the layer of highest diffusivity and the
highest value occurring in the layer of lowest
diffusivity ; also, the value of the (m+ 1)th eigenvalue is
higher than that of the mth eigenvaluein each layer. Itis
also clear from equation (23) in ref. {1] that the
eigenvalue g, has a decreasing influence on the higher
order transverse eigenvalues 4,;,,. Physically, this states
that higher rates of change in temperature across a
composite slab are less dependent than lower ones on
temperature variations along the slab. Note that for a
homogeneous slab, temperature variations in the two
space dimensions are independent.

It was stated above that some transverse eigenvalues
could be imaginary. It is shown in the Appendix that,
foratwo-layerslab, whenthelongitudinaleigenvalueis
increased from g, to p, ., then the value of any real
transverse eigenvalue is decreased in the higher-
diffusivity layer and increased in the lower-diffusivity
layer. Strictly, the proof in the Appendix is only for a
change A in u which is sufficiently small for A2 to be
neglected and since fromequation{11}inref. [1]JAhasa
value of n/y, this implies a slab whose length is large
relative to its thickness. However, the change in the
value of the real transverse eigenvalues 4, is always in
the same direction, that is, always decreasing or
increasing in the higher- or lower-diffusivity layers,
respectively, for all values of m, and since the value of A
for a thick slab is simply a multiple of the value of A for
anarbitrarily thinslab, then the conclusionis true forall
two-layer slabs. Since all the transverse eigenvalues
must be real when nis zero, then they must remain real
in the layer of lower diffusivity whereas in the layer of
higher diffusivity, they must decrease from their values
when ‘n’ is zero and they must all progressively become
imaginary as ‘n’ is progressively increased. The lowest
order transverse eigenvalue becomes imaginary firstly,
then the second lowest order, etc.

If «, is greater than unity, then the transverse
eigenvalues A, in the lower layer of a two-layer slab
become imaginary, or possibly zero, when from
equation (23) in ref. [1]

1 1
(1 - —);tf =23
a o

If 2, is zero, then equation (51) in ref. [1] becomes

A, tan A,(Y,—yY)—B, =0, (15)
which is of the same form as the transcendental
equation (52) for the homogeneous slab. However, in
the present case

Ay = (2 —1)"n,
and equation (15) determines the value of ‘¢’ for a given
value of B, for which 2, is zero. Since ‘' is dependent on
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thelength of theslab,equation (15)defines thelength for
a particular type of slab and its environment for which
there is at least one zero-valued eigenvalue in the lower
layer.

If«, isless than unity, then the transverse eigenvalues
2, in the upper layer become imaginary, or possibly
zero, when '

(I—ay)ug > o 23,
If 2, is zero, then equation (51) in ref. [1] becomes

B,—[1+ B2 —¥1)1B, 4, tan L,Y, =0, (16)

where
1—e, \12
)'1 =< 1) H,
oy

and again equation (16) defines a length for a particular
type of slab for which there is at least one zero-valued
eigenvalue in the upper layer.

THE TRANSVERSE EIGENFUNCTIONS

The two-layer composite slab will be used to discuss
the eigenfunctions associated with real, zero and
imaginary eigenvalues and to deduce the related heat
flows about the interface between the two layers. When
the eigenvalues in both layers are real, then from
equation (29) in ref. [1] and since E; =1 and G, =0
from equation (25) in ref. [1], the eigenfunctions in the
lower layer have the form

cos A,

and in the upper layer
G
cos 2P+ == sin Ay,
E,

where from equations (45) and (46) in ref. [1], with
fa=1

G, _ Ay tan A0 — By A, tan A,

E, 2,42 tan Ay, tan A,

If 2, is zero, then the form of the associated

eigenfunctionin the lower layer of the slabis a constant
equal to unity, and in the upper layer is

an

cos A, +tan A, sin A0,

If 2, is zero, then the form of the associated
eigenfunction in the lower layer of the slab is

cos A,

and in the upper layer is

_ Btan Ay,
1+, B2, tan Ly,

which is a line of constant slope.

It is interesting to note that when the zero-valued
eigenvalueis in the lower layer, which must then be the
more diffuse one, then no energy flows across the lower
layer for that particular longitudinal and transverse

1
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temperature distribution. When the zero-valued
eigenvalue is in the upper layer, which must then be the
more diffuse one, thereisno changein the stored energy
at any point in that layer due to energy flowing across
the layer and any such change must be due solely to
energy flowing along that layer: again, this is only true
for that particular longitudinal and transverse
temperature distribution.

If 2, is imaginary and equal to il;, then the
associated eigenfunctionin the lower layer has the form

cosh 2,1,
and in the upper layer

A3 tan 2,4 4B, 2 tanh 2y
23— B2y tan 2y, tanh 2,9,

If A, is imaginary and equal to i’;,, then the
associated eigenfunctionin thelower layer has theform

cos Ay,
and in the upper layer

Aip tanh A — B2, tan A,
Aia+ P12, tanh 20, tan Ay,

+sinh A,y

cos A+ sin A,

cosh 2,0+

The physical significance of the imaginary eigen-
values can be obtained by considering the shape of the
associated eigenfunctions in the two layers. Figure 1(a)
shows the eigenfunctions for a two-layer slab as 2,
changes from being real, through zero, to being
imaginary for consecutive values of i1, and at the planes
cos pt,n = +1; Fig. 1(b) shows the similar case for 4,.

W
coSpn=+1 -1
Tn _:'.I,I ¥, \“
i \:
— — =i — —|-— —'& — —a
7z [ \_
00/ i N
I \
/ ri H \

€OS Ppl= +1 v -1
Tn ;o CERR
e A
- —\—//-— - = =X —-)—A
AN . 5/
7
B\
a0\ [t
o) [IE

FiG. 1. Eigenfunctions for real and imaginary eigenvalues fora

two-layer slab: (a) top layer more diffuse; (b) bottom layer

morediffuse, - ,eigenvalueinmorediffuselayer real ;-—--—-- )

eigenvalue in more diffuse layer zero; — ——, eigenvalue in
more diffuse layer imaginary.
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Consider the planes A, Band cos 7 = + 1inFig. 1(a).
The longitudinal energy flow in both layers is away
from the plane cos p,n = +1 and towards the plane
cos i = —1. At the intersection of planes B and
cos i) = +1,morecnergyisleavingthanisarrivingin
the transverse direction and this excess must be from
the stored energy here, whereas at the intersection of
planes B and cos p,7 = —1, more energy is arriving
than is leaving in the transverse direction and this
excess energy must be stored here.
At the intersection of planes A and cos y = +1:

2, real: more energy is leaving than is arriving in the
transverse direction and the excess must be from the
stored energy here.

2y zero:theenergyleaving is equal to that arrivingin
the transverse direction and therefore the transverse
energy flow has no effect on the temperature change
here.

2,imaginary:lessenergyisleaving thanisarrivingin
the transverse direction, which cannot be associated
with energy storage here since the energy is being
dissipated through the top surface, and hence, this
excess energy arriving in the transverse direction must
be leaving in the longitudinal direction.

At the intersection of planes A and cos p, = —1:

2, real : more energy is arriving than is leaving in the
transverse direction and the excess must be stored here.

2y zero:theenergyleavingisequal to that arrivingin
the transverse direction and therefore the transverse
cnergy flow has no effect on the temperature change
here.

/,imaginary: more energy is leaving thanis arriving
in the transverse direction, which cannot be associated
with energy storage since the diffusion is into the slab
from the surroundings, and hence, this excess energy
leaving in the transverse direction must be arriving in
the longitudinal direction.

An examination of Fig. 1(b) provides a similar
argument to that for Fig. 1(a). Hence one can conclude
that the imaginary eigenvalues are associated with the
higher-diffusivity layer effectively short-circuiting the
lower-diffusivity layer in the longitudinal direction, for
those particular transverse and longitudinal tempera-
ture distributions.

Itisinteresting to note that when B, is zero, whichitis
for a fully insulated slab, then when gt is zero, a possible
solution ofequation (51)inref.{1]isthatboth 2, and 4,
are equal to zero. Hence, when pis not zero, the lowest-
order transverse eigenvalue must be imaginary in the
layer of higher diffusivity,and real and greater than zero
in the layer of lower diffusivity. In physical terms, this
tells us that while it is possible to have a temperature
variation across a fully insulated composite slab with
no temperature variation along it, it is impossible to
have temperature variation along the slab without
having temperature variation across it.
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CONCLUSIONS

It has been shown that the transverse eigenvalues
decrease in magnitude in the more diffusive layer of a
two-dimensional two-layer composite slab as the
longitudinal eigenvalues increase, and conversely, they
increase in the less diffusive layer. In the homogeneous
slab, the transverse eigenvalues are independent of the
longitudinal eigenvalues and the solution for the
composite slab therefore shows that the rate of decay of
temperature variations along the slab is decreased in
the higher-diffusivity layer by the presence of the lower-
diffusivity layer, but it is enhanced in the lower-
diffusivity layer by the presence of the higher-diffusivity
layer.

The transverse eigenvalues in the higher-diffusivity
layer progressively become imaginary as the order of
the longitudinal eigenfunction is increased. These
imaginary cigenvalues reflect that for that order of
longitudinal and transverse temperature distribution,
energyis beingtransferred betwecn different parts of the
lower-diffusivity layer via the higher-diffusivity layer.
The sum of the squares of the real longitudinal
cigenvalue and the imaginary transverse eigenvalue is
always positive because the sum is related to the sum of
the squares of the eigenvaluesin the other layer, and the
eigenvalues in the layer of lower diffusivity are always
real; hence, the complete eigenfunction is decaying in
both layers. The solution also shows that steeper
temperature gradients across the lower-diffusivity
layer, that is higher values of ;,,, require steeper
temperature gradients along the slab, that is higher
values of i1, for energy to flow between different parts of
the lower-diffusivity layer via the higher-diffusivity
layer.

For the special case of a fully insulated composite
slab, itis possible to have temperature variations across
the slab with none along it, but the converse is
impossible.
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APPENDIX

Change in the transverse eigenvalues for a change in the
longitudinal eigenvalue for a two-layer slab

The transcendental equation governing the eigenvalues is
equation (51) in ref. [1], which can be written as

23 tan o — )+ B2 4, tan Ay + BBy 2,
x tan A, tan A,(¢,—¢,)—B2, =0, (Al)
where from equation (23) in ref. [1]
A p? =, (A +47). (A2

Ifthenthlongitudinal eigenvalueis pand the(n+ Dthis e+ A’,
and if the corresponding transverse eigenvalues are 2,
together with 1;, and 2,+A, together with 2, +A,
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respectively, then gives

(R2+ 8, +(+4) = g [(4, +4,)* +(u+4)°]. (A3) )lAl{a, +j‘—2
“1

If A, A, and A, are all sufficiently small that their squares and
higher powers may be neglected, then equation (A3) can be
reduced to

A8y +pA = oy (4, A, + pA). (Ad)
Also, from equation (A1)

(Ga+A) tan (4,4 A,)+ B2, +4,) (4, +4))
% tan {(2, + AWy} +B.f (A +4A)) tan {(2,+4,)¢,}
X tan {(‘;-z +A) (=)} =B +A;) =0. (AS)

Expanding the terms and neglecting the second and higher
power terms in A; and A,, which allows tan A, to be replaced
by Aj, then equation (A5) can be reduced to

.
p

[A:(2—¥,)+2 tan "-z('//z—'l’x)'i’ﬁx;—l tan 2y,
2

— B4 (2 —yy) tan A1, tan A (Y, — )

}-zAzﬁ A
+Bl(lrllz_'f,/l)ﬂlz tan Ay, + BV, —vy)
< tan Latha—) - 1 |
. Ly

22
[_ilpx tan A, tan A,(;—y)+ 1Ay,

A
+24,419 +ﬂ1;—2 tan ;-1‘#1'*‘3:% tan 1,y tand,(, —v,)
b 1

A
+B,jy, tan lz(¢2—¢1)+B,)—2¢1 tan )~1¢1:|
4

\

=0. (A6)

Substituting for 2,A, from equation (A4) into equation (A5),
and using equation (A1) to simplify the resulting equation

% B1[2;+ B, tan L,(y, —y))IAW, Z, }
B —¥)Zy+ Bl —)B1 2 tan A, Z,y
+(2;—~1JuA =0, (A7)

which, by squaring the denominator in the factor multiplying
Ayf2y, leads to

1AL+ WPy Z(A3Z,+ BIZ3+22,BZ
R (A3Z,+B,f12, tan L1, - Z,)?
+(o2, = 1A =0, (A8)
where
tan A
Z, = 1+tan? A0, + 1P "p‘, (A9)
Ly
tan 2,(y,—y,)
Z, = 1+4tan? 2,0, — )+ —o2V2a= ¥ a4
. s
tan ,(f,—¢y)
Zy=1+tan? L,(0,—¢) - ——————, (All
3 2AP2—¥1) PR (ALD)
and
2
3, —
Z4=tan 22 —¥) (A12)

ll(wl - llbl)

Note that Z,~-Z, are always positive for all real values of 1,
and 1,. Therefore equation (A8) shows thatifa; < 1,thenA, is
positive when A is positive, and if «; > 1, then A, is negative
when A is positive.

Combining equations (A8) and (A4) gives

A, = (2, — DuA{23Y, B, Z,(A3Z2,+ B} Z,+21,B,Z)
+ [(A3Z,+ BB, A, tan L, Z3)* + 230, B, Z,
x().§22+B,zZ3+2).2B‘Z4)]}, (A13)

which shows that if «, < 1, then A, is negative when A is
positive, and if ; > 1, then A, is positive when A is positive.

Hence, for a; <1, 2, increases and 2, decreases as pu
increases, and for a, > 1, 2, decreases and 1, increases as g
increases.

CONDUCTION VARIABLE DANS UNE PLAQUE COMPOSITE BIDIMENSIONNELLE.
INTERPRETATION PHYSIQUE DES MODES DE TEMPERATURE

Résumé—On montre que les valeurs propres des modes de température & travers une plaque composite d deux
couches peuvent devenir progressivement imaginaires dans la couche la plus diffuse, pour les modes de
température d’orde élevé le long de la plaque. Un argument logique est présenté pour montrer que cela
représentelefait quela couche la plus diffusante court-circuite la moins diffusante en dissipant les variations de
température suivant lalongueur. On montre aussi que pour une plaque composite totalement calorifpgée, des
variations de température longitudinales sont accompagnées par des variations de température transversales.

INSTATIONARE WARMELEITUNG IN EINER ZWEIDIMENSIONALEN GESCHICHTETEN
PLATTE—IL PHYSIKALISCHE DEUTUNG DER LOSUNGEN FUR DIE TEMPERATUR

Zusammenfassung—Es wird gezeigt, daB die Eigenwerte der Lésungen des Temperaturverlaufs quer zu einer
zweischichtigen Platte in der besser leitenden Schicht fiir die Teilldsungen hdherer Ordnungin Langsrichtung
zunehmend imaginir werden miissen. Dieser Umstand 148t sich so deuten, daB die besser wiarmeleitende
Schicht die schlechter leitende hinsichtlich des Ausgleichs von Temperaturunterschieden in Lingsrichtung
kurzschlieBt. Weiterhin wird gezeigt, daB fiir eine vollkommen isolierte, geschichtete Platte Temperatur-
unterschiede in Langsrichtung immer von Temperaturunterschieden in Querrichtung begleitet sein miissen.
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HEYCTAHQBUBIUAACS NMEPEJAYA TEMNJA TENJONPOBOAHOCTLIO B
ABYMEPHOI KOMIIO3UTHON MJAWUTE—II. ®H3HUYECKOE OBOCHOBAHHE
TEMIIEPATYPHBIX MOJ

Annotaims—IloKka3aHo, yro cOSCTBEHHLIC TeMIEPATYpPHBIE MOJABI, PACTIPOCTPAHANOIIHECH MONEPEK

NBYXCAOHHOI KOMNO3KUTHOI! MIKTH, JOMXHBI NMOCTENECHHO MEPEXOanTh B 3atyxatoime B anddysnom

Cno¢e [UIS TEMNEPATYPHBIX MO BHICIUETO MOPAAKA, PACHpPOCTPaHAIOMHXCA BAOAL nanThL. [lpuBeaeHo

JIOTHYECKOe J0KA3aTENLCTBO TOTO, 4TO YeM Gosee abdekTHBRO 3akopoueH audpdysHblii coil, TeM oH

MECHBLIC MpPH NPOROJBHBIX AHCCHNATHBHBIX H3MeHEHusx TemnepaTypel. Ilokasano Taxxe, uTo mis

NOIHOCTLIO H3OMHPOBAHHON KOMMO3HTHON NJHTHL NPONO/BHBIE M3MEHECHHA TEMIEPATyph! BIOIb
TUTHTB! QOIKHBI CONPOBOXATHCK MONEPEYHBIMH TeMNEPATYPHBIMH HIMEHEHHAMH.





